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Technological advances in molecular bi-
ology and genetics have allowed neu-

roscientists to reduce the study of the
brain to individual proteins or genes of
interest. The challenge of making the
jump from such detailed molecular study
to an integrated understanding of brain
structure or function is highlighted by the
large number of genes and combinations
of genes and the time necessary to study
the function of any one gene product
individually. These same advances in mo-
lecular biology that have propelled our
knowledge of neuronal development and
functioning over the last decade have also
widened an implicit division between mo-
lecular and systems neuroscientists.
cDNA microarray technology offers the
exciting potential to bridge the molecular-
systems gap by allowing for a systems-level
molecular or ‘‘genomic’’ approach to neu-
robiology because of its unprecedented
capacity to monitor simultaneously wide-
spread changes in gene expression. The
parallel monitoring of thousands of genes
provides a more global view of the system
being studied than classic reductionist
techniques and requires sophisticated
quantitative analytic and computational
approaches that are not currently avail-
able at the bench of the typical molecular
neurobiology lab. Despite some of the
barriers to entry, microarray expression
profiling is one of several genetic ap-
proaches that will have a broad and lasting
impact on our molecular and systems un-
derstanding of brain development and
functioning.

Two basic platforms for fluorescent mi-
croarray expression studies currently ex-
ist—oligonucleotide arrays and spotted
cDNA arrays (Fig. 1; refs. 1 and 2). In this
issue of PNAS, Sandberg et al. (3) have
elegantly applied microarray expression
profiling by using oligonucleotide arrays
(4, 5) to begin to map out the baseline
differences in gene expression that may
underlie structural and behavioral differ-
ences between inbred laboratory mouse
strains. Over 400 inbred mouse strains
with known genealogy exist, and their
power for the dissection of complex be-

havioral and quantitative trait analysis is
gaining more widespread appreciation (6–
8). The synergistic combination of mouse
genetics and microarray expression profil-
ing presented here is paradigmatic for
future work in this area.

Sandberg et al. study baseline gene ex-
pression differences in six brain regions
(cortex, hippocampus, amygdala, entorhi-
nal cortex, midbrain, and cerebellum) in
two mouse strains—C57BLy6 (BL6) and
129SvEv (129)—that have been shown
previously to have major differences in
behavior and disease susceptibility (9, 10).
Furthermore, embryonic stem cells used
to generate knockouts are typically de-
rived from 129 strains, and the C57BLy6 is
commonly used in pharmacology and
quantitative trait mapping. Thus, appreci-
ation of the influence of genetic back-
ground on gene expression in these strains
has significant practical implications.
Comparisons are made between gene ex-
pression in the two mouse strains and
between different regions within each
strain. Mouse embryonic fibroblasts are
used as a non-central nervous system com-
parison sample. Gene expression differ-
ences after a drug-induced seizure are
determined as an example of the molec-
ular phenotypes underlying the differen-
tial disease susceptibility of the two
strains.

Several aspects of the approach that
make this a well-designed microarray ex-
periment deserve highlighting. The first is
the determination of experimental reli-
ability and reproducibility. Small changes
in experimental conditions can alter gene
expression significantly in small numbers
of genes, a problem magnified when thou-
sands of genes are queried in parallel. To
assess variability because of dissection
methods and other nongenetic factors, the
authors (3) compared duplicate brain
samples from the same region from the
same strain and demonstrated that fewer
than 0.02% (2y13,000) of probe sets on
the array were differentially expressed.
This verifies a high level of experimental
reproducibility that reflects careful exper-
imental methods and stringent analytic

criteria that accepted only the most robust
changes. The use of these analytic criteria
is supported further by the identification
of changes previously shown to be differ-
entially expressed between the two strains.
This demonstration of reproducibility and
low noise level in these control samples is
critical for the further interpretation of
data generated in the experimental con-
ditions and lends significant credence to
the results. Another strength is the use
of alternative methods to confirm a subset
of the differences observed on the mi-
croarrays. Sandberg et al. use reverse tran-
scription–PCR and Northern blotting to
confirm qualitatively the differential ex-
pression of several of the genes identified
(3). Although only one Northern blot is
shown, care was taken to compare the
consistency of the microarray data with
previously published regional expression
patterns. One related issue that has not
been discussed adequately in the microar-
ray literature is to what extent microarray
expression data compare quantitatively
with more standard methods such as
Northern blotting. Anecdotal experience
suggests that low-stringency microarray
hybridizations have higher background,
blunting the observed mRNA expression
differences relative to other techniques
such as Northern blotting. This does not
detract from the utility of microarray tech-
nology but highlights an area where care
and caution have to be taken in the inter-
pretation of results. Sandberg et al. (3) and
others (4, 11–15) demonstrate that mi-
croarray expression profiling has great
utility for screening thousands of mRNAs
in parallel to identify those with the largest
expression changes between comparison
samples.

In this regard, it is remarkable that of
more than 7,000 expressed genes de-
tected on the array by Sandberg et al. (3),
only 24 genes were identified that were
differentially expressed in all six brain
regions between the two strains. Seventy-
three genes were differentially expressed
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in at least one of the six brain regions
between the two strains, or approxi-
mately 1% of the genes showing hybrid-
ization signals on the array. A similar
number of genes were detected as dif-
ferentially expressed between different
brain regions within the same strain. On
the basis of this analysis, Sandberg et al.
postulate that the cerebellum is the most
molecularly distinct region, with 23
unique genes, followed by the midbrain
(n 5 10), hippocampus (n 5 4), and
cortex (n 5 2). Furthermore, the percent
of genes detected that are differentially
expressed between fibroblasts from the
two strains (1%) is the same as that
detected between the brains of the two
strains. These results bear careful scru-
tiny. Are the molecular distinctions be-
tween fibroblasts from 129SvEv and
C57BLy6 equal in magnitude to those
between their brains? How can the his-

tologically less complex cerebellum show
many more uniquely expressed genes
than the cerebral cortex or hippocam-
pus? It is counterintuitive that a tissue
comprised of two major neuronal phe-
notypes appears the most molecularly
complex of all brain regions sampled.

These unexpected results likely reflect
methodological limitations rather than a
complete catalogue of gene expression
differences. cDNA microarray analysis is
limited currently to the detection of genes
expressed at a relative abundance of about
1y100,000 mRNAs, although the sensitiv-
ity continues to improve (1, 5, 14). Addi-
tionally, because stringent analytic criteria
were used by Sandberg et al., genes ex-
pressed at the low end of detection limits
that may yield more variable signals would
be at a further disadvantage. Because
most arrays, including those used here, are
based on known genes and expressed se-

quence tags, which are currently biased
toward more abundant genes, their utility
for detecting changes in low-abundance
genes may be further restricted.

Current models of central nervous sys-
tem (CNS) development postulate that
specific aspects of neuronal phenotype are
dictated by low-abundance mRNAs (16)
or by those expressed at very specific times
in development (17, 18). Differences in
these low-abundance species are probably
at the detection limit of current microar-
ray experiments. This problem is magni-
fied further in complex CNS tissues such
as the cerebral cortex, where hundreds of
different cell types may reside within a few
square millimeters of tissue (17–19), fur-
ther diluting low-abundance RNAs by an-
other two orders of magnitude. Because
fibroblasts are homogeneous cell popula-
tions, even relatively rare mRNAs ex-
pressed at 1 to 5 copies per 100,000 may be
detected. This is in contrast to brain tissue,
which shows marked cellular heterogene-
ity (17–19). In the same vein, the simplest
of the CNS tissues studied, the cerebel-
lum, appears to show more genetic vari-
ability than the cerebral cortex. Thus,
another interpretation of the data pre-
sented is that the less complex the tissue
studied, the more likely expression differ-
ences will be identified should they be
present (Fig. 2). This dilution of detected
molecular differences by increasing tissue
complexity is emphasized further by the
finding that 7,169 of the 13,069 genes
represented on the array (55%) were de-
tected by this microarray system as ex-
pressed in the adult mouse brain. This is in
contrast to the approximately 9,500 genes
detected as expressed by fibroblasts. At
face value, this suggests the implausible
conclusion that more genes are expressed
in fibroblasts than in the mouse CNS.
However, if the alternative interpretation
that the critical low-abundance genes have
not been queried is correct, the data in this
paper highlight the potential importance
of simplified systems or detailed single-

Fig. 1. Microarray experimental schema. cDNA-synthesized RNA from two samples, A and B, is simul-
taneously hybridized onto a spotted ordered array of cDNA clones. Each sample is labeled with fluors that
emit at different wavelengths so that signal from each sample can be distinguished. On the false color
image depicted, red signals represent stronger Sample A hybridization, and green signals represent
stronger Sample B hybridization or relative enrichment. Yellow spots indicate equal abundance in both
samples, and a yellow signal is observed in control nondifferentially expressed spots (group of four in
lower left-hand corner). A three-dimensional matrix plot of gene expression data is depicted simply to
illustrate one form of analysis and data visualization. The highest peaks represent the most differentially
expressed genes. Sandberg et al. (3) use the GENECHIP oligonucleotide array system (Affymetrix, Santa Clara,
CA), in which samples are hybridized individually onto separate arrays, and interarray comparisons are
made by using a global scaling factor that normalizes by scaling to the average signal intensity on each
array. The term ‘‘probe’’ refers to the DNA attached to the array surface and the term ‘‘target’’ to the cDNA
that is hybridized onto the array. Radioactive targets may be used as well, and each system has advantages
and disadvantages in terms of cost, sample preparation, ease of use, and reproducibility.

Fig. 2. Molecular diversity and tissue complexity.
There is a rough inverse correlation between the
number of uniquely expressed genes in a region
and the number of cell types. The cell numbers on
the x axis are approximations included to facilitate
comparison.
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cell analysis (20, 21) in fully categorizing
gene expression in complex tissues. Fur-
ther expression analyses of individual cell
types or laminae within the brain regions
studied are needed to test this premise.
This does not mean that studies using CNS
tissue are not valuable, nor does it limit the
value of expression changes that were
detected by this analysis. It merely indicates
that an incomplete subset of total expres-
sion differences will be detected in complex
tissues by using current technologies.

One advantage of these data for neu-
roscientists is that the relatively small
number of genes identified as differing
between brain regions at baseline or after
a seizure facilitates the in-depth study of
how these genes may contribute to specific
phenotypes. Do genes that are enriched in
one particular brain region reflect differ-
ences in cell number or the specific novel
molecular phenotype of a particular cell
type? Followup study with higher-resolu-
tion techniques, such as in situ hybridiza-
tion, is likely to lead to a structural and
molecular understanding of the observed
strain differences as well as of the poten-
tial role of each gene product in the brain’s
vulnerability to environmental insults that
provoke seizures. Functional analysis is
facilitated, because many of the differen-
tially regulated genes have previously de-
fined roles (3). The presented comparison
of only two mouse strains does not yet
allow for strong correlations with seizure
susceptibility but serves as a template and
proof of principle that should guide future
studies. The data generated by Sandberg
et al. begin to address the issue of how
much genetic variability might contribute
to observed experimental variability. The
availability of these data on the Internet
makes them an accessible resource that
others can use, analyze, and contribute to.

When compared with other model or-
ganisms, inbred mouse strains currently

offer considerable power to the neurosci-
entist who wishes to exploit genetic meth-
ods to study neurobehavioral phenotypes
or other quantitative traits (6–8). As
Sandberg et al. emphasize (3), inbred
mouse strains exhibit significant variation
in a wide range of neurological pheno-
types, including susceptibility to neurode-
generation, seizure threshold, and cyto-
toxic cell death, as well as behavioral
phenotypes, such as spatial memory or
fear conditioning (6). Also, quantitative
anatomical traits such as the size of vari-
ous brain regions, neuronal types, or even
neuron number show significant variabil-
ity between mouse strains that are caused
by heritable factors and thus provide an
avenue for identifying the structural com-
ponents that underlie behaviors (22). The
combination of microarray expression
analysis with traditional mapping and po-
sitional cloning approaches in mice (23) is
likely to provide an efficient route to
disease gene or quantitative trait (QTL)
identification. Multiple gene–gene inter-
actions and gene–environment contribu-
tions to complex neurobehavioral pheno-
types constitute one area where the use of
microarray gene expression analysis may
have considerable advantages over classic
QTL analysis. Instead of genotyping,
quantitative trait analysis could be con-
ducted by using cDNA expression data
across a range of recombinant inbred
strains. cDNA expression probing would
consider simultaneously the effects of en-
vironment and epistasis and would pro-
vide a more direct functional assay than
genotyping. Inbred mouse strains also may
offer the most powerful route to under-
standing the influences of the environ-
ment on gene expression, because genetic
variability is controlled (24). Additionally,
the gene expression pattern of particular
brain regions can be treated as phenotypic
assays with which to identify mutant ani-

mals of interest in mutagenesis screens.
Appreciation of baseline gene expression
differences in inbred mouse strains that
are the staples of these approaches and
developing databases that catalogue these
differences are the necessary preludes for
these experiments, as Sandberg et al. de-
scribe (3).

In contrast to those in experimental
animals, cDNA expression studies aimed
at understanding the molecular genetic
basis for human phenotypes face the con-
founding variables of tissue preservation,
postmortem interval, and other environ-
mental variables. The present findings in
mice suggest that differing genetic back-
grounds among human subjects may con-
tribute significantly to variability in gene
expression. However, this source of vari-
ation has not been dealt with in any pub-
lished study using human brain tissue. This
does not alter the utility of microarrays for
expression studies in humans but rather
highlights important variables that should
be considered when interpreting experi-
mental results. In fact, cDNA microarrays
could provide an efficient functionally rel-
evant method for the analysis of individual
variation in brain gene expression in hu-
mans. These variations, coupled with en-
vironmental factors, form the basis for
individual variability in behavior, person-
ality, and cognition and the brain struc-
tures that underlie them.
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